Pilot and student pilot community. Share your pilot lessons or aviation stories.



Aircraft Performance

Landing Performance (Part One)

Aircraft Performance

In many cases, the landing distance of an aircraft will define the runway requirements for flight operations. The minimum landing distance is obtained by landing at some minimum safe speed, which allows sufficient margin above stall and provides satisfactory control and capability for a go-around. Generally, the landing speed is some fixed percentage of the […]

Read the full article →

Takeoff Performance (Part Two)

Aircraft Performance

The effect of wind on takeoff distance is large, and proper consideration also must be provided when predicting takeoff distance. The effect of a headwind is to allow the aircraft to reach the lift-off speed at a lower groundspeed while the effect of a tailwind is to require the aircraft to achieve a greater groundspeed […]

Read the full article →

Takeoff Performance (Part One)

Aircraft Performance

The minimum takeoff distance is of primary interest in the operation of any aircraft because it defines the runway requirements. The minimum takeoff distance is obtained by taking off at some minimum safe speed that allows sufficient margin above stall and provides satisfactory control and initial rate of climb. Generally, the lift-off speed is some […]

Read the full article →

Takeoff and Landing Performance – Water on the Runway and Dynamic Hydroplaning

Aircraft Performance

Water on the runways reduces the friction between the tires and the ground, and can reduce braking effectiveness. The ability to brake can be completely lost when the tires are hydroplaning because a layer of water separates the tires from the runway surface. This is also true of braking effectiveness when runways are covered in […]

Read the full article →

Takeoff and Landing Performance – Runway Surface and Gradient

Aircraft Performance

Runway conditions affect takeoff and landing performance. Typically, performance chart information assumes paved, level, smooth, and dry runway surfaces. Since no two runways are alike, the runway surface differs from one runway to another, as does the runway gradient or slope. [Figure 10-14] Runway surfaces vary widely from one airport to another. The runway surface […]

Read the full article →

Takeoff and Landing Performance

Aircraft Performance

The majority of pilot-caused aircraft accidents occur during the takeoff and landing phase of flight. Because of this fact, the pilot must be familiar with all the variables that influence the takeoff and landing performance of an aircraft and must strive for exacting, professional procedures of operation during these phases of flight. Takeoff and landing […]

Read the full article →

Pressure Altitude – Region of Reversed Command

Aircraft Performance

The aerodynamic properties of an aircraft generally determine the power requirements at various conditions of flight, while the powerplant capabilities generally determine the power available at various conditions of flight. When an aircraft is in steady, level flight, a condition of equilibrium must prevail. An unaccelerated condition of flight is achieved when lift equals weight, […]

Read the full article →

Pressure Altitude – Range Performance (Part Three)

Aircraft Performance

The effect of altitude on the range of a propeller-driven aircraft is illustrated in Figure 10-12. A flight conducted at high altitude has a greater true airspeed (TAS), and the power required is proportionately greater than when conducted at sea level. The drag of the aircraft at altitude is the same as the drag at […]

Read the full article →

Pressure Altitude – Range Performance (Part Two)

Aircraft Performance

Cruise control of an aircraft implies that the aircraft is operated to maintain the recommended long-range cruise condition throughout the flight. Since fuel is consumed during cruise, the gross weight of the aircraft will vary and optimum airspeed, altitude, and power setting can also vary. Cruise control means the control of the optimum airspeed, altitude, […]

Read the full article →