Pilot and student pilot community. Share your pilot lessons or aviation stories.

Turns – Turns to Predetermined Headings

by Flight Learnings

in Airplane Basic Flight Maneuvers - Electronic Flight Display

Turning the aircraft is one of the most basic maneuvers that a pilot learns during initial flight training. Learning to control the aircraft, maintaining coordination, and smoothly rolling out on a desired heading are all keys to proficient attitude instrument flying.

EFDs allow the pilot to better utilize all instrumentation during all phases of attitude instrument flying by consolidating all traditional instrumentation onto the PFD. The increased size of the attitude indicator, which stretches the entire width of the PFD, allows the pilot to maintain better pitch control while the introduction of the turn rate indicator positioned directly on the compass rose aids the pilot in determining when to begin a roll-out for the desired heading.

When determining what bank angle to utilize when making a heading change, a general rule states that for a small heading change, do not use a bank angle that is greater than the total number of degrees of change needed. For instance, if a heading change of 20° is needed, a bank angle of not more than 20° is required. Another rule of thumb that better defines the bank angle is half the total number of degrees of heading change required, but never greater than standard rate. The exact bank angle that equates to a standard rate turn varies due to true airspeed.

With this in mind and the angle of bank calculated, the next step is determining when to start the roll-out process. For example:

An aircraft begins a turn from a heading of 030° to a heading of 120°. With the given airspeed, a standard rate turn has yielded a 15° bank. The pilot wants to begin a smooth coordinated roll-out to the desired heading when the heading indicator displays approximately 112°. The necessary calculations are:

  • 15° bank (standard rate) ÷ 2 = 7.5°
  • 120° – 7.5° = 112.5°

By utilizing this technique, the pilot is better able to judge if any modifications need to be made to the amount of lead once the amount of over- or undershooting is established.

Comments on this entry are closed.

Previous post:

Next post: