Pilot and student pilot community. Share your pilot lessons or aviation stories.

Convective Currents

in Weather Theory

Different surfaces radiate heat in varying amounts. Plowed ground, rocks, sand, and barren land give off a large amount of heat; water, trees, and other areas of vegetation tend to absorb and retain heat. The resulting uneven heating of the air creates small areas of local circulation called convective currents.

Convective currents cause the bumpy, turbulent air sometimes experienced when flying at lower altitudes during warmer weather. On a low altitude flight over varying surfaces, updrafts are likely to occur over pavement or barren places, and downdrafts often occur over water or expansive areas of vegetation like a group of trees. Typically, these turbulent conditions can be avoided by flying at higher altitudes, even above cumulus cloud layers. [Figure 11-12]

Figure 11-12. Convective turbulence avoidance.

Figure 11-12. Convective turbulence avoidance. -Click to Enlarge-

Convective currents are particularly noticeable in areas with a land mass directly adjacent to a large body of water, such as an ocean, large lake, or other appreciable area of water. During the day, land heats faster than water, so the air over the land becomes warmer and less dense. It rises and is replaced by cooler, denser air flowing in from over the water. This causes an onshore wind, called a sea breeze. Conversely, at night land cools faster than water, as does the corresponding air. In this case, the warmer air over the water rises and is replaced by the cooler, denser air from the land, creating an offshore wind called a land breeze. This reverses the local wind circulation pattern. Convective currents can occur anywhere there is an uneven heating of the Earth’s surface. [Figure 11-13]

Figure 11-13. Sea breeze and land breeze wind circulation patterns.

Figure 11-13. Sea breeze and land breeze wind circulation patterns. -Click to Enlarge-

Convective currents close to the ground can affect a pilot’s ability to control the aircraft. For example, on final approach, the rising air from terrain devoid of vegetation sometimes produces a ballooning effect that can cause a pilot to overshoot the intended landing spot. On the other hand, an approach over a large body of water or an area of thick vegetation tends to create a sinking effect that can cause an unwary pilot to land short of the intended landing spot. [Figure 11-14]

Figure 11-14. Currents generated by varying surface conditions.

Figure 11-14. Currents generated by varying surface conditions. -Click to Enlarge-

515G+mn0RuL._SX331_BO1,204,203,200_Learn more about aviation weather with Weather Flying by Robert Buck. Regarded as the bible of weather flying, this aviation classic not only continues to make complex weather concepts understandable for even the least experienced of flyers, but has now been updated to cover new advances in technology.



Comments on this entry are closed.

Previous post:

Next post: