Pilot and student pilot community. Share your pilot lessons or aviation stories.



Atmosphere: Atmospheric Pressure

by Flight Learnings

in Weather Theory

The unequal heating of the Earth’s surface not only modifies air density and creates circulation patterns; it also causes changes in air pressure or the force exerted by the weight of air molecules. Although air molecules are invisible, they still have weight and take up space.

Imagine a sealed column of air that has a footprint of one square inch and is 350 miles high. It would take 14.7 pounds of effort to lift that column. This represents the air’s weight; if the column is shortened, the pressure exerted at the bottom (and its weight) would be less.

The weight of the shortened column of air at 18,000 feet is approximately 7.4 pounds; almost 50 percent that at sea level. For instance, if a bathroom scale (calibrated for sea level) were raised to 18,000 feet, the column of air weighing 14.7 pounds at sea level would be 18,000 feet shorter, and would weigh approximately 7.3 pounds (50 percent) less than at sea level. [Figure 11-4]

The actual pressure at a given place and time differs with altitude, temperature, and density of the air. These conditions also affect aircraft performance, especially with regard to takeoff, rate of climb, and landings.

Figure 11-4. Atmosphere weights.

Figure 11-4. Atmosphere weights.

515G+mn0RuL._SX331_BO1,204,203,200_Learn more about aviation weather with Weather Flying by Robert Buck. Regarded as the bible of weather flying, this aviation classic not only continues to make complex weather concepts understandable for even the least experienced of flyers, but has now been updated to cover new advances in technology.

 

Comments on this entry are closed.

Previous post:

Next post: