Pilot and student pilot community. Share your pilot lessons or aviation stories.

Gyroscopic Flight Instruments – Rigidity in Space

by Flight Learnings

in Flight Instruments

Rigidity in space refers to the principle that a gyroscope remains in a fixed position in the plane in which it is spinning. An example of rigidity in space is that of a bicycle wheel. As the bicycle wheels increase speed, they become more and more stable in their plane of rotation. This is why a bicycle is very unstable and very maneuverable at low speeds and very stable and less maneuverable at higher speeds.

By mounting this wheel, or gyroscope, on a set of gimbal rings, the gyro is able to rotate freely in any direction. Thus, if the gimbal rings are tilted, twisted, or otherwise moved, the gyro remains in the plane in which it was originally spinning. [Figure 7-18]

rigidity in space

Figure 7-18. Regardless of the position of its base, a gyro tends to remain rigid in space, with its axis of rotation pointed in a constant direction.

51DPcJTcMwL._SX381_BO1,204,203,200_Learn more about all of your flight instruments with the Instrument Flying Handbook. This is the FAA’s primary pilot resource for instrument flight rules (IFR) covering everything pertinent to operating an aircraft in instrument meteorological conditions (IMC) or without reference to outside visuals, relying solely on the information gleaned from the cockpit.

Comments on this entry are closed.

Previous post:

Next post: