Pilot and student pilot community. Share your pilot lessons or aviation stories.



Vertical Speed Indicator (VSI)

in Flight Instruments

The VSI, which is sometimes called a vertical velocity indicator (VVI), indicates whether the aircraft is climbing, descending, or in level flight. The rate of climb or descent is indicated in feet per minute (fpm). If properly calibrated, the VSI indicates zero in level flight. [Figure 7-5]


Vertical speed indicator (VSI)

Figure 7-5. Vertical speed indicator (VSI).

Although the VSI operates solely from static pressure, it is a differential pressure instrument. It contains a diaphragm with connecting linkage and gearing to the indicator pointer inside an airtight case. The inside of the diaphragm is connected directly to the static line of the pitot-static system. The area outside the diaphragm, which is inside the instrument case, is also connected to the static line, but through a restricted orifice (calibrated leak).

Both the diaphragm and the case receive air from the static line at existing atmospheric pressure. The diaphragm receives unrestricted air while the case receives the static pressure via the metered leak. When the aircraft is on the ground or in level flight, the pressures inside the diaphragm and the instrument case are equal and the pointer is at the zero indication. When the aircraft climbs or descends, the pressure inside the diaphragm changes immediately, but due to the metering action of the restricted passage, the case pressure remains higher or lower for a short time, causing the diaphragm to contract or expand. This causes a pressure differential that is indicated on the instrument needle as a climb or descent.

When the pressure differential stabilizes at a definite ratio, the needle indicates the rate of altitude change.

The VSI displays two different types of information:

  • Trend information shows an immediate indication of an increase or decrease in the aircraft’s rate of climb or descent.
  • Rate information shows a stabilized rate of change in altitude.

The trend information is the direction of movement of the VSI needle. For example, if an aircraft is maintaining level flight and the pilot pulls back on the control yoke causing the nose of the aircraft to pitch up, the VSI needle moves upward to indicate a climb. If the pitch attitude is held constant, the needle stabilizes after a short period (6–9 seconds) and indicates the rate of climb in hundreds of fpm. The time period from the initial change in the rate of climb, until the VSI displays an accurate indication of the new rate, is called the lag. Rough control technique and turbulence can extend the lag period and cause erratic and unstable rate indications. Some aircraft are equipped with an instantaneous vertical speed indicator (IVSI), which incorporates accelerometers to compensate for the lag in the typical VSI. [Figure 7-6]

Instantaneous Vertical Speed Indicator

Figure 7-6. An IVSI incorporates accelerometers to help the instrument immediately indicate changes in vertical speed.

51DPcJTcMwL._SX381_BO1,204,203,200_Learn more about all of your flight instruments with the Instrument Flying Handbook. This is the FAA’s primary pilot resource for instrument flight rules (IFR) covering everything pertinent to operating an aircraft in instrument meteorological conditions (IMC) or without reference to outside visuals, relying solely on the information gleaned from the cockpit.

 

Comments on this entry are closed.

Previous post:

Next post: