Pilot and student pilot community. Share your pilot lessons or aviation stories.



Adjustable-Pitch Propellers (Part Two)

in Aircraft Systems

On aircraft equipped with a constant-speed propeller, power output is controlled by the throttle and indicated by a manifold pressure gauge. The gauge measures the absolute pressure of the fuel/air mixture inside the intake manifold and is more correctly a measure of manifold absolute pressure (MAP). At a constant rpm and altitude, the amount of power produced is directly related to the fuel/air flow being delivered to the combustion chamber. As the throttle setting is increased, more fuel and air flows to the engine and MAP increases. When the engine is not running, the manifold pressure gauge indicates ambient air pressure (i.e., 29.92 inches mercury (29.92 “Hg)). When the engine is started, the manifold pressure indication will decrease to a value less than ambient pressure (i.e., idle at 12 “Hg). Engine failure or power loss is indicated on the manifold gauge as an increase in manifold pressure to a value corresponding to the ambient air pressure at the altitude where the failure occurred. [Figure 6-9]


Figure 6-9. Engine power output is indicated on the manifold pressure gauge.

Figure 6-9. Engine power output is indicated on the manifold pressure gauge.

The manifold pressure gauge is color coded to indicate the engine’s operating range. The face of the manifold pressure gauge contains a green arc to show the normal operating range, and a red radial line to indicate the upper limit of manifold pressure.

For any given rpm, there is a manifold pressure that should not be exceeded. If manifold pressure is excessive for a given rpm, the pressure within the cylinders could be exceeded, placing undue stress on the cylinders. If repeated too frequently, this stress can weaken the cylinder components and eventually cause engine failure. As a general rule, manifold pressure (inches) should be less than the rpm.

A pilot can avoid conditions that overstress the cylinders by being constantly aware of the rpm, especially when increasing the manifold pressure. Conform to the manufacturer’s recommendations for power settings of a particular engine to maintain the proper relationship between manifold pressure and rpm.

When both manifold pressure and rpm need to be changed, avoid engine overstress by making power adjustments in the proper order:

  • When power settings are being decreased, reduce manifold pressure before reducing rpm. If rpm is reduced before manifold pressure, manifold pressure will automatically increase, possibly exceeding the manufacturer’s tolerances.
  • When power settings are being increased, reverse the order—increase rpm first, then manifold pressure.
  • To prevent damage to radial engines, minimize operating time at maximum rpm and manifold pressure, and avoid operation at maximum rpm and low manifold pressure.

The engine and/or airframe manufacturer’s recommendations should be followed to prevent severe wear, fatigue, and damage to high-performance reciprocating engines.

518VcjVMo3L._SX402_BO1,204,203,200_Learn more about aircraft and their systems with A Pilot’s Guide to Aircraft and Their Systems by ASA. Pilot-oriented rather than mechanic-oriented, this guide to aircraft systems is designed specifically to help general aviation pilots understand how aircraft systems work so that they can better use them in flight.

 

Comments on this entry are closed.

Previous post:

Next post: