Pilot and student pilot community. Share your pilot lessons or aviation stories.



Avoiding Wake Turbulence

by Flight Learnings

in Aerodynamics

Wingtip vortices are greatest when the generating aircraft is “heavy, clean, and slow.” This condition is most commonly encountered during approaches or departures because an aircraft’s AOA is at the highest to produce the lift necessary to land or take off. To minimize the chances of flying through an aircraft’s wake turbulence:
• Avoid flying through another aircraft’s flightpath.
• Rotate prior to the point at which the preceding aircraft rotated, when taking off behind another aircraft.
• Avoid following another aircraft on a similar flightpath at an altitude within 1,000 feet. [Figure 4-11]
• Approach the runway above a preceding aircraft’s path when landing behind another aircraft, and touch down after the point at which the other aircraft wheels contacted the runway. [Figure 4-12]
A hovering helicopter generates a down wash from its main rotor(s) similar to the vortices of an airplane. Pilots of small aircraft should avoid a hovering helicopter by at least three rotor disc diameters to avoid the effects of this down wash. In forward flight this energy is transformed into a pair of strong, high-speed trailing vortices similar to wing-tip vortices of larger fixed-wing aircraft. Helicopter vortices should be avoided because helicopter forward flight airspeeds are often very slow and can generate exceptionally strong wake turbulence.

Wingtip vortices are greatest when the generating aircraft is “heavy, clean, and slow.” This condition is most commonly encountered during approaches or departures because an aircraft’s AOA is at the highest to produce the lift necessary to land or take off. To minimize the chances of flying through an aircraft’s wake turbulence:

  • Avoid flying through another aircraft’s flightpath.
  • Rotate prior to the point at which the preceding aircraft rotated, when taking off behind another aircraft.
  • Avoid following another aircraft on a similar flightpath at an altitude within 1,000 feet. [Figure 4-11]
  • Approach the runway above a preceding aircraft’s path when landing behind another aircraft, and touch down after the point at which the other aircraft wheels contacted the runway. [Figure 4-12]

A hovering helicopter generates a down wash from its main rotor(s) similar to the vortices of an airplane. Pilots of small aircraft should avoid a hovering helicopter by at least three rotor disc diameters to avoid the effects of this down wash. In forward flight this energy is transformed into a pair of strong, high-speed trailing vortices similar to wing-tip vortices of larger fixed-wing aircraft. Helicopter vortices should be avoided because helicopter forward flight airspeeds are often very slow and can generate exceptionally strong wake turbulence.

wake turbulence

Figure 4-11. Avoid following another aircraft at an altitude within 1,000 feet.

wake turbulence

Figure 4-12. Avoid turbulence from another aircraft.

Wind is an important factor in avoiding wake turbulence because wingtip vortices drift with the wind at the speed of the wind. For example, a wind speed of 10 knots causes the vortices to drift at about 1,000 feet in a minute in the wind direction. When following another aircraft, a pilot should consider wind speed and direction when selecting an intended takeoff or landing point. If a pilot is unsure of the other aircraft’s takeoff or landing point, approximately 3 minutes provides a margin of safety that allows wake turbulence dissipation. For more information on wake turbulence, see Advisory Circular 90-23.

51UFncHi9pL._SX390_BO1,204,203,200_Learn more about airplane aerodynamics with the Illustrated Guide to Aerodynamics. This unique introductory guide, which sold more than 20,000 copies in its first edition, proves that the principles of flight can be easy to understand, even fascinating, to pilots and technicians who want to know how and why an aircraft behaves as it does.

Comments on this entry are closed.

Previous post:

Next post: